
Machine Learning Engineering with Python
Transform your machine learning projects into successful deployments with this practical guide on how to build and scale solutions that solve real-world problems Includes a new chapter on generative AI and large language models (LLMs) and building a pipeline that leverages LLMs using LangChain
Key Features- This second edition delves deeper into key machine learning topics, CI/CD, and system design
- Explore core MLOps practices, such as model management and performance monitoring
- Build end-to-end examples of deployable ML microservices and pipelines using AWS and open-source tools
- Plan and manage end-to-end ML development projects
- Explore deep learning, LLMs, and LLMOps to leverage generative AI
- Use Python to package your ML tools and scale up your solutions
- Get to grips with Apache Spark, Kubernetes, and Ray
- Build and run ML pipelines with Apache Airflow, ZenML, and Kubeflow
- Detect drift and build retraining mechanisms into your solutions
- Improve error handling with control flows and vulnerability scanning
- Host and build ML microservices and batch processes running on AWS
This book is designed for MLOps and ML engineers, data scientists, and software developers who want to build robust solutions that use machine learning to solve real-world problems. If you’re not a developer but want to manage or understand the product lifecycle of these systems, you’ll also find this book useful. It assumes a basic knowledge of machine learning concepts and intermediate programming experience in Python. With its focus on practical skills and real-world examples, this book is an essential resource for anyone looking to advance their machine learning engineering career.
Auteur | | Andrew P. McMahon |
Taal | | Engels |
Type | | E-book |
Categorie | |