
The Machine Learning Solutions Architect Handbook
Design, build, and secure scalable machine learning (ML) systems to solve real-world business problems with Python and AWS Purchase of the print or Kindle book includes a free PDF eBook
Key Features- Go in-depth into the ML lifecycle, from ideation and data management to deployment and scaling
- Apply risk management techniques in the ML lifecycle and design architectural patterns for various ML platforms and solutions
- Understand the generative AI lifecycle, its core technologies, and implementation risks
- Apply ML methodologies to solve business problems across industries
- Design a practical enterprise ML platform architecture
- Gain an understanding of AI risk management frameworks and techniques
- Build an end-to-end data management architecture using AWS
- Train large-scale ML models and optimize model inference latency
- Create a business application using artificial intelligence services and custom models
- Dive into generative AI with use cases, architecture patterns, and RAG
This book is for solutions architects working on ML projects, ML engineers transitioning to ML solution architect roles, and MLOps engineers. Additionally, data scientists and analysts who want to enhance their practical knowledge of ML systems engineering, as well as AI/ML product managers and risk officers who want to gain an understanding of ML solutions and AI risk management, will also find this book useful. A basic knowledge of Python, AWS, linear algebra, probability, and cloud infrastructure is required before you get started with this handbook.
Auteur | | David Ping |
Taal | | Engels |
Type | | E-book |
Categorie | |