Interpretable Machine Learning with Python
A deep dive into the key aspects and challenges of machine learning interpretability using a comprehensive toolkit, including SHAP, feature importance, and causal inference, to build fairer, safer, and more reliable models. Purchase of the print or Kindle book includes a free eBook in PDF format.
Key Features- Interpret real-world data, including cardiovascular disease data and the COMPAS recidivism scores
- Build your interpretability toolkit with global, local, model-agnostic, and model-specific methods
- Analyze and extract insights from complex models from CNNs to BERT to time series models
- Progress from basic to advanced techniques, such as causal inference and quantifying uncertainty
- Build your skillset from analyzing linear and logistic models to complex ones, such as CatBoost, CNNs, and NLP transformers
- Use monotonic and interaction constraints to make fairer and safer models
- Understand how to mitigate the influence of bias in datasets
- Leverage sensitivity analysis factor prioritization and factor fixing for any model
- Discover how to make models more reliable with adversarial robustness
This book is for data scientists, machine learning developers, machine learning engineers, MLOps engineers, and data stewards who have an increasingly critical responsibility to explain how the artificial intelligence systems they develop work, their impact on decision making, and how they identify and manage bias. It’s also a useful resource for self-taught ML enthusiasts and beginners who want to go deeper into the subject matter, though a good grasp of the Python programming language is needed to implement the examples.
Auteur | | Serg Masis |
Taal | | Engels |
Type | | E-book |
Categorie | | Computers & Informatica |