
Machine Learning Engineering with Python
Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environments
Key Features- Explore hyperparameter optimization and model management tools
- Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages
- Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases
- Find out what an effective ML engineering process looks like
- Uncover options for automating training and deployment and learn how to use them
- Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions
- Understand what aspects of software engineering you can bring to machine learning
- Gain insights into adapting software engineering for machine learning using appropriate cloud technologies
- Perform hyperparameter tuning in a relatively automated way
This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is necessary.
Auteur | | Andrew P. McMahon |
Taal | | Engels |
Type | | E-book |
Categorie | | Computers & Informatica |