Math for Deep Learning

Math for Deep Learning

With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning. You'll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You'll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network. In addition you'll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.

Auteur | Ron Kneusel
Taal | Engels
Type | Paperback
Categorie | Computers & Informatica

bol logo

Kijk verder

Boekomslag voor ISBN: 9781718501911
Boekomslag voor ISBN: 9781718500747
Boekomslag voor ISBN: 9781718500808
Boekomslag voor ISBN: 9781718500723
Boekomslag voor ISBN: 9781593274245
Boekomslag voor ISBN: 9781718502727


Boekn ©